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B pa60Te OMMCaH METOM, MO3BOJISTFOLMI HaXOUTb PE30HAHCHBIC COCTOAHUA I PEIATUBUCTCKUX ABYXYACTUYHBIX CHCTEM U
HCCJIIEA0BATh UX BIIMSAHUE HA CEUCHUE PACCESIHUS. Meron ocHOBaH Ha PEUICHNH UHTEIPATIbHBIX ypaBHeHI/If/’I B PEISITUBUCTCKOM
KOHCbI/II‘ypaHI/IOHHOM NpEACTaBJICHUU. Z[aHHLIﬁ METOTQ HpHMeHéH JUTA I/IHGHTI/I(bI/IKaLH/H/I CTPYKTYP CECUYCHUS pAaCCEIHUA IJId MO-

JCIBHOIO IOTEHIIHAJIA.

Kntouegvie cnosa: dgyxuacmuunvie unmezpanbHvle YPAGHEHUs, PEIAMUBUCIICKOE KOHGUSYPAYUoHHoe npedcmasgienue, Kom-
NIEKCHbLIL NOBOPOM, PE30OHAHCHOE COCMOAHUE, AMNAUMYOA PACCESHUSA, CeYeHUe PACCESHU.

Method for determination of resonance states of the relativistic two-particle system and analysis of their influence on the cross
section is presented. The method is based on the integral equations in the relativistic configurational representation. This
method is applied for the identification of the scattering cross sections structures for a model potential.

Keywords: two-particle integral equations, relativistic configurational representation, complex scaling, resonance states, scat-
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Introduction

One of the quantum field theory approaches
used to describe two-particle systems is based on
two-particle equations of the quasipotential type [1],
[2]. Initially these equations were obtained in the
momentum representation where they have integral
form analogous to the Schrodinger integral equation.
Alternatively, the so called relativistic configura-
tional representation (RCR) [3], [4] for the two-
particle quasipotential equations is commonly used.
The RCR is introduced by means of expansion of all
values in the equations over matrix elements of the
principal series of the Lorentz group irreducible uni-
tary representations [5]. One of the advantages of the
RCR equations in comparison with the equations in
the momentum representation is the physical sense
transparency of the potentials. For example the ana-
lytic dependence of the potential V(r) on the RCR-
variable r may indicate the probable presence of
resonant or bound states for the considered system.
In this paper we describe model-potential study of
the RCR integral equations for the resonance states
of the two particle systems.

1 Complex scaling for the relativistic integral
equations
Two-particle integral equations for the scatter-
ing s-states in the RCR have the following form [6]
Wy (X,s7) =sin y mr+
° (1.1)
+IG(j)(Zq,r,r')V(r')l//(j)(;(q,r')dr'.
0
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Here j=1 (j=3) corresponds to the Logunov-
Tavkhelidze equation (modified equation), j=2
(j=4) corresponds to the Kadyshevsky equation
(modified equation), v, (x,,r) — wave function,

V(r) — relativistic potential, G, (z,,7,r") — Green
function (GF). The rapidity y, is connected to the
relativistic energy 2E, through 2E, =2mcosh y,.

Green functions for the specific j are written as [6]
G (Zyorsr) =

' ’ (1.2)
=G (X r =)= G (o +1),
where
—i sinh[(w/2+iy )ymr]
G(l)(/},/qsr) = 1) . 1 5
K, sinh[7zmr /2]
—i cosh[(z/2+iy )ymr]
Go (X1 =25 ; '
K, cosh[zmr /2]
(4mcosh y )™
G ) =— 1
oz cosh[zmr /2]
i sinh[(m+iy, )mr]
K;z) sinh[zmr]
—i sinh[(z+iy, )mr]
G(4) (Zq’r) = (4) R !
K, sinh[zmr]
Here we use the denotations
K" =K® =msinh2y,,
KO =K =2msinh g,.
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In quantum mechanics the resonance states are
defined as the S-matrix (or scattering amplitude)
poles located in the fourth quadrant of the complex
momentum p plane [7]. In this work we investigate
the existence of such poles in the complex rapidity
X, blane. Relativistic integral equations for the

resonance states have to be homogeneous by anal-
ogy with non-relativistic case. In these equations GF
for the states with  complex  energy

2 2 .
2E,=2,/q" +m" (m — mass of each particle) has to

be used, where real part of the energy is greater than
the rest energy 2m of two considered particles.

The integral equations for the resonance states,
Le. states with complex rapidities y, =& +iw,,

where & ,w, are real parameters have the form
l//(/')(é:q + iwfi ’ }’) =

: (13
_jdr' (& W, YV (W (&, + i, 1),

One can solve integral equations (1.3)
numerically only for sufficiently fast decreasing
analytical potentials, because GF and wave function
in integrals generally do not decrease at r — .
Moreover numerical solution of this equations is
possible only in the band w,, <w, <w, ., which is

dependent on the propemes of the potential.
However, resonant rapidities may be found outside
this area. In order to solve (1.3) in other domain of
complex y,, we will use the well known non-
relativistic complex scaling method [8], [9]. After
transformation of the real variables r, r' to the
complex variables z=rexp(id), z'=r'exp(id),
0<6<6,,
are expressed as

wNE, +iw,,r) = (1.4)

= [dr G+ WO WNE, i,
0

the equations for the resonance states

)

where
l//((f))(ZlI’r) = l//(j)(lqaz)a V(g)(r') =

=exp(i0)V (2'), G (x,.r-7") = G, (X,-2,2).

In the non-relativistic theory resonance states
correspond to sudden changes of the scattering am-
plitude in some resonance energy real part neighbor-
hood. Scattering amplitude in the quantum mechan-
ics is defined as the coefficient divided by momen-
tum in front of the scattered wave exp(ipr), when
asymptotic form of the wave function at » - oo is
considered. Let us consider the analogous asymp-
totes of the relativistic wave function. Taking into
account asymptotic behavior of the GFs

2
K(’) —ysin y,mr'exp(iy,mr)

integral equation (1.1) at » — oo yields:

Gy (o] ==
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1,1/(1.)(r)|H3c =sin g, mr+qf ;,(x,)expliy,mr),
where g =msinh y, is the relativistic momentum
and scattering amplitude f, (7,) has the following
form
T =
(1.5)
= qK(” jdr sin y,mr' V(' (x,.7)-

Partial scattering amplitude is connected to the par-
tial s-wave cross section o, (7,)

O-(j)(lq):4ﬂ'|f(j)(lq)|2- (16)

2 Resonance contributions into the scattering
amplitude

In order to study the influence of the reso-
nances on the scattering amplitude (or the cross sec-
tion) let us define the contribution of the R-th reso-
nance to the scattering amplitude by analogy with
the non-relativistic case [10]

Res[ /) (}a, )]
Ve }(q
The residue Res[f,; (%, Y] can be found using the

@.1)

Cauchy’s theorem [11]

Res[ £, ()] @mmm%
(2.2)

_P R igN g
_E-([f(”(lq + pe?)e?dg.
Contour C is a circle in the complex y, plane with

the center at resonant rapidity ;(q"’, p is the radius of
this circle, chosen in such a way that inside the con-
tour only one resonance of interest is located. Defin-

ing the reduced scattering amplitude f( ; and re-

duced cross section &m

- Rosl f(F
TG 2) Zf(j)(;(q)_w

R b
Ko~ Xy (2.3)
o 2) =47t
S\ Xy 2y )= 47| J0) X 2]
and then comparing o, and &,
possible feature in the cross section and investigate
the influence of the desired resonance.

For the numerical treatment we approximate
integrals in (1.1) and (1.4) by one of the quadrature

formulas ij(r)drzzllj:lka(n), where o,,r, —

one can identify

are weights and grid points. After approximation we
obtain the systems of N linear algebraic equations
with respect to Wi =V (X,1) and

v =y ()&, +iw,.n,), correspondingly:

N
ZMskl//k :bs’ (24)
k=1
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M, =6, -a,G (X, 1-n)V (1K), b, =siny mr,

N

9),,(0) _
ZMsk y, =0,
=1

0 0 0
Ms(k) =0, _ka((j))(qu”ssrk)V( )(”k),

where 0, are elements of the identity matrix. Non-

trivial solution of the homogeneous system exists if
the following condition holds:

d,(x,)=d; &, +iw,)= det(M((f)’) =0. (2.5)
This condition is satisfied only for some complex
X, values, which are the rapidities corresponding to

the resonance states. Separating real and imaginary
parts of d ,(y,) we rewrite equation (2.5) as the

system of nonlinear equations

Reld,,,(z,)1=0, Tmld,,(x,)]=0. (2.6)
Computing d,;(x,) for different rapidity values (on
the grid in the complex y, plane) we find the ap-

proximate position of the determinant zeroes, and
then use these values as start values for solving sys-
tem (2.6) by the continuous analog of the Newton’s
method [12]. Solving non-homogeneous system
(2.4) and using approximation of the integrals we are
able to compute scattering amplitudes and cross sec-
tions and obtain residues of the scattering amplitudes
at resonant rapidities.

3 Results of the calculations

In tables 3.1 and 3.2 we present the results of
the calculations of the resonant rapidities and scat-
tering amplitude residues for the following po-
tentials

Table 3.1 — Resonant rapidities for the potentials (3.1)

V(r) =307 cosh(z — f)mr
! cosh zmr

. (3.1)
V,(r)= 30,2 S0z = fmr

sinh zmr
where <z and m=1. These potentials are possi-
ble relativistic generalization of the well known non-
relativistic potential V7> exp(—ar).

In figure 3.1 cross sections, scattering ampli-
tudes, reduced cross sections, reduced scattering
amplitudes and contributions of the resonances to
the scattering amplitudes for the potential 7, with

j=2, f=n/4 are presented. The first three plots

correspond to the case when contribution from the
first resonance is excluded, the second and third
plots correspond to the pictures obtained when con-
tributions from the second and third resonances are
omitted. For the considered potential the first and the
second resonances lie very close to the real axis (see
table 3.1). These structures completely disappear for
the reduced cross sections and amplitudes. In the
figures for the cross section and for the scattering
amplitude one can see narrow peak and narrow
trough at the corresponding rapidity values. The
third resonance has lager imaginary part and has
influence on the wider area of the cross section. In
figure 3.1 one can see that the contribution of this
resonance to the scattering amplitude is much more
delocalized. The wide trough disappeare in the re-
duced cross section, but it is reasonable that struc-
tures assigned to the narrow resonances are still
visible.

B R J =2, potential , J =4, potential ¥,
Relz,] Im[y, ] Rely,] Im[y, ]
z 1 2.399071 —-0.001305 2.801659 —4.2x107"
4 2 2.767267 —0.007430 3.339097 -0.013728
3 2.569008 —0.192597 3.425283 —0.187849
j =1, potential V] j =13, potential V,
z 1 1.720483 —0.134337 1.868578 -0.257724
2

Table 3.2 — Scattering amplitude residues for the potentials (3.1)

B R J =2, potential , J =4, potential ¥,
Relz,] Im[z,] Rely,] Im[y,]
T 1 ~-1.9698%10™ 1.3114x10™ - —
n 2 8.6100x10™ 4.9217x10™ 6.6597x10™ 1.0657x10°
3 —7.5494x107 6.1202x107 9.8482x10 ~3.4470x107
j =1, potential V] j =13, potential V,
P 1 -3.4617%10° 5.1932x10 7.4375%1072 6.4391x107
2
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Figure 3.1 — Cross sections and scattering amplitudes
—— — cross section/scattering amplitude; — — — — reduced cross section/reduced scattering amplitude;
— ——— contribution of the resonance into the scattering amplitude
Conclusion

The complex scaling method, widely used in
the non-relativistic theory and applied to the RCR
two particle integral equations allows the calculation
of resonant rapidities for the analytical potentials.
Defining the contribution of resonance into the scat-
tering amplitude through its residue gives the possi-
bility to assign the structure in the cross section to
the particular resonance. It is shown that analysing
the influence of the resonance on the cross section
with the use of the presented method it is possible to
distinguish the contributions from the overlapping
resonance structures. The proposed method may be
applied for the study of more realistic systems in the
presence of resonance states.
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